[{"@type":"PropertyValue","name":"Format","value":"16kHz, 16 bit, wav, mono channel;"},{"@type":"PropertyValue","name":"Content category","value":"Dialogue based on given topics;"},{"@type":"PropertyValue","name":"Recording condition","value":"Low background noise (indoor);"},{"@type":"PropertyValue","name":"Recording device","value":"Android smartphone, iPhone;"},{"@type":"PropertyValue","name":"Speaker","value":"1,022 native speakers in total, 49% male and 51% female;"},{"@type":"PropertyValue","name":"Country","value":"India(IND);"},{"@type":"PropertyValue","name":"Language(Region) Code","value":"hi-IN;"},{"@type":"PropertyValue","name":"Language","value":"Hindi;"},{"@type":"PropertyValue","name":"Features of annotation","value":"Transcription text, timestamp, speaker ID, gender, PII redacted."},{"@type":"PropertyValue","name":"Accuracy Rate","value":"Sentence Accuracy Rate (SAR) 95%"}]
{"id":1156,"datatype":"1","titleimg":"https://res.datatang.com/asset/productNew/APY220531001.jpg?Expires=2007353708&OSSAccessKeyId=LTAI5tQwXnJZbubgVfVa1ep9&Signature=XReWjU9BVkjNeDfjRWav4UNKu0Y%3D","type1":"165","type1str":null,"type2":"166","type2str":null,"dataname":"797 Hours Hindi Speech Dataset – 1,022 Native Indian Speakers","datazy":[{"title":"Format","desc":"Format","content":"16kHz, 16 bit, wav, mono channel;"},{"title":"Content category","desc":"Content category","content":"Dialogue based on given topics;"},{"title":"Recording condition","desc":"Recording condition","content":"Low background noise (indoor);"},{"title":"Recording device","desc":"Recording device","content":"Android smartphone, iPhone;"},{"title":"Speaker","desc":"Speaker","content":"1,022 native speakers in total, 49% male and 51% female;"},{"title":"Country","desc":"Country","content":"India(IND);"},{"title":"Language(Region) Code","desc":"Language(Region) Code","content":"hi-IN;"},{"title":"Language","desc":"Language","content":"Hindi;"},{"title":"Features of annotation","desc":"Features of annotation","content":"Transcription text, timestamp, speaker ID, gender, PII redacted."},{"title":"Accuracy Rate","desc":"Accuracy Rate","content":"Sentence Accuracy Rate (SAR) 95%"}],"datatag":"Conversational Speech,Phone,Hindi","technologydoc":null,"downurl":null,"datainfo":null,"standard":null,"dataylurl":null,"flag":null,"publishtime":null,"createby":null,"createtime":null,"ext1":null,"samplestoreloc":null,"hosturl":null,"datasize":null,"industryPlan":null,"keyInformation":null,"samplePresentation":[{"name":"/data/apps/damp/temp/ziptemp/APY220531001_demo1732183200159/APY220531001_demo/cel_001_00007_16k-0071.wav","url":"https://bj-oss-datatang-03.oss-cn-beijing.aliyuncs.com/filesInfoUpload/data/apps/damp/temp/ziptemp/APY220531001_demo1732183200159/APY220531001_demo/cel_001_00007_16k-0071.wav?Expires=4102329599&OSSAccessKeyId=LTAI8NWs2pDolLNH&Signature=Y33NOW3I4THxZUviuxbnk12KOOI%3D","intro":"अ इन लोग के वीडिओज़ से काफी फायदा भी मिलता हैं और नई नई चीजे सीखने को मिलती है तो, उन लोगों को फॉलो करने से कोई मतलब नहीं है।","size":0,"progress":100,"type":"mp3"},{"name":"/data/apps/damp/temp/ziptemp/APY220531001_demo1732183200159/APY220531001_demo/cel_001_00007_16k-0074.wav","url":"https://bj-oss-datatang-03.oss-cn-beijing.aliyuncs.com/filesInfoUpload/data/apps/damp/temp/ziptemp/APY220531001_demo1732183200159/APY220531001_demo/cel_001_00007_16k-0074.wav?Expires=4102329599&OSSAccessKeyId=LTAI8NWs2pDolLNH&Signature=13uubBKa61BezmDTSf1GaU%2FDu6w%3D","intro":"नहीं पर कभी-कभार ऐसा होता है ना की यार आज मूड हो गया आज उस सेलिब्रिटी की मूवी लगी है अपन थिएटर में चलकर देखते है अपनी फॅमिली को ले जाते है।","size":0,"progress":100,"type":"mp3"},{"name":"/data/apps/damp/temp/ziptemp/APY220531001_demo1732183200159/APY220531001_demo/cel_001_00007_16k-0072.wav","url":"https://bj-oss-datatang-03.oss-cn-beijing.aliyuncs.com/filesInfoUpload/data/apps/damp/temp/ziptemp/APY220531001_demo1732183200159/APY220531001_demo/cel_001_00007_16k-0072.wav?Expires=4102329599&OSSAccessKeyId=LTAI8NWs2pDolLNH&Signature=APyD20nAubaj6MOTsiiuLdbX9sM%3D","intro":"तो मेरा तो ऐसा मानना है की ये ज़्यादा बेनिफिशियल है की आप, इस टाइप की सेलेब्रिटीज़ को","size":0,"progress":100,"type":"mp3"},{"name":"/data/apps/damp/temp/ziptemp/APY220531001_demo1732183200159/APY220531001_demo/cel_001_00007_16k-0070.wav","url":"https://bj-oss-datatang-03.oss-cn-beijing.aliyuncs.com/filesInfoUpload/data/apps/damp/temp/ziptemp/APY220531001_demo1732183200159/APY220531001_demo/cel_001_00007_16k-0070.wav?Expires=4102329599&OSSAccessKeyId=LTAI8NWs2pDolLNH&Signature=7hvmTCapI7Q2fjpMfS8QkwLzwIE%3D","intro":"मैं जैसे फिर मैं यूट्यूब जगत में ज्यादा जाना पसंद करता हूँ कुछ यूट्यूबर्स अच्छे है जैसे डॉक्टर विवेक बिंद्रा हो गए।","size":0,"progress":100,"type":"mp3"},{"name":"/data/apps/damp/temp/ziptemp/APY220531001_demo1732183200159/APY220531001_demo/cel_001_00007_16k-0069.wav","url":"https://bj-oss-datatang-03.oss-cn-beijing.aliyuncs.com/filesInfoUpload/data/apps/damp/temp/ziptemp/APY220531001_demo1732183200159/APY220531001_demo/cel_001_00007_16k-0069.wav?Expires=4102329599&OSSAccessKeyId=LTAI8NWs2pDolLNH&Signature=RR%2F34Tmxkehz6SVlbeYqMsVuW48%3D","intro":"बाकि आपका फिर अक्षय कुमार के आलावा कौन उससे कम इस्तर वाला सेलिब्रिटी अच्छा लगता हैं आपको?","size":0,"progress":100,"type":"mp3"}],"officialSummary":"This dataset contains 797 hours of spontaneous Hindi dialogue speech, collected from dialogues based on given topics, covering 20+ domains. Transcribed with text content, speaker's ID, gender, age and other attributes. Our dataset was collected from extensive and diversify speakers(1,022 native speakers), geographicly speaking, enhancing model performance in real and complex tasks. Quality tested by various AI companies. We strictly adhere to data protection regulations and privacy standards, ensuring the maintenance of user privacy and legal rights throughout the data collection, storage, and usage processes, our datasets are all GDPR, CCPA, PIPL complied.","dataexampl":null,"datakeyword":["Hindi speech dataset","Hindi conversation dataset","hindi asr dataset","hindi tts dataset","hindi speech corpus","hindi audio dataset"],"isDelete":null,"ids":null,"idsList":null,"datasetCode":null,"productStatus":null,"tagTypeEn":"Data Type,Language","tagTypeZh":null,"website":null,"samplePresentationList":null,"datazyList":null,"keyInformationList":null,"dataexamplList":null,"bgimg":null,"datazyScriptList":null,"datakeywordListString":null,"sourceShowPage":"speechRec","BGimg":"brightSpot_audio","voiceBg":["/shujutang/static/image/comm/audio_bg.webp","/shujutang/static/image/comm/audio_bg2.webp","/shujutang/static/image/comm/audio_bg3.webp","/shujutang/static/image/comm/audio_bg4.webp","/shujutang/static/image/comm/audio_bg5.webp"]}
797 Hours Hindi Speech Dataset – 1,022 Native Indian Speakers
Hindi speech dataset
Hindi conversation dataset
hindi asr dataset
hindi tts dataset
hindi speech corpus
hindi audio dataset
This dataset contains 797 hours of spontaneous Hindi dialogue speech, collected from dialogues based on given topics, covering 20+ domains. Transcribed with text content, speaker's ID, gender, age and other attributes. Our dataset was collected from extensive and diversify speakers(1,022 native speakers), geographicly speaking, enhancing model performance in real and complex tasks. Quality tested by various AI companies. We strictly adhere to data protection regulations and privacy standards, ensuring the maintenance of user privacy and legal rights throughout the data collection, storage, and usage processes, our datasets are all GDPR, CCPA, PIPL complied.
This is a paid datasets for commercial use, research purpose and more. Licensed ready made datasets help jump-start AI projects.
Specifications
Format
16kHz, 16 bit, wav, mono channel;
Content category
Dialogue based on given topics;
Recording condition
Low background noise (indoor);
Recording device
Android smartphone, iPhone;
Speaker
1,022 native speakers in total, 49% male and 51% female;